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Abstract

In this paper we present an extension of our general high-order curvilinear finite element approach for solving the
Euler equations in a Lagrangian frame [1] to the case of axisymmetric problems. The numerical approximation of
these equations is important in a number of applications of compressible shock hydrodynamics and the reduction of 3D
problems with axial symmetry to 2D computations provides a significant computational advantage. Unlike traditional
staggered-grid hydrodynamics (SGH) methods which use the so-called “area-weighting” scheme, we formulate our semi-
discrete axisymmetric conservation laws directly in 3D and reduce them to a 2D variational form in a meridian cut of the
original domain. This is a natural extension of the high-order curvilinear finite element framework we have developed
for 2D and 3D problems in Cartesian geometry, leading to a rescaled momentum conservation equation which includes
new radial terms in the pressure gradient and artificial viscosity forces. We show that this approach exactly conserves
energy and we demonstrate via computational examples that it also excels at preserving symmetry in problems with
symmetric initial conditions. We also demonstrate that our computational method does not produce spurious symmetry
breaking near the axis of rotation, as is the case with many area-wighted approaches.

Keywords: Axisymmetric problems, Lagrangian hydrodynamics, High-order finite element methods

1. Introduction and Motivation

The Euler equations of compressible hydrodynamics
describe complex, multi-material, high speed flow and shock
wave propagation over general 2D and 3D computational
domains. We are interested in Lagrangian numerical meth-
ods for these problems, where the equations are discretized
and solved on a generally unstructured computational mesh
that moves with the fluid velocity. Specifically, the goal of
Lagrangian hydrodynamics is to solve the following system
of conservation laws:

Momentum Conservation: ρ
dv

dt
= ∇ · σ , (1)

Mass Conservation:
1
ρ

dρ

dt
= −∇ · v , (2)

Energy Conservation: ρ
de

dt
= σ : ∇v , (3)

Equation of Motion:
dx

dt
= v , (4)

Equation of State: σ = −EOS(ρ, e)I, (5)

which involves the material derivative d
dt , the kinematic

variables for the fluid velocity v and position x, and the

IThis work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Con-
tract DE-AC52-07NA27344, LLNL-JRNL-XXXXXX

thermodynamic variables for the density ρ, pressure p and
internal energy e of the fluid [2, 3]. The equation of state,
EOS, is a constitutive relation which in the simplest case
of a polytropic ideal gas with a constant adiabatic index
γ > 1 has the form p = (γ− 1)ρ e. Our formulation uses a
general stress tensor σ in order to accommodate the inclu-
sion of anisotropic tensor artificial viscosity stresses (see
Section 3.2) as well as more complex material constitutive
relations. We also focus on purely Lagrangian methods,
and do not consider the other components of a full Arbi-
trary Lagrangian-Eulerian (ALE) framework in this paper.

Three dimensional simulations of Lagrangian shock hy-
drodynamics are of great practical importance [3, 4, 5],
but are also substantially more expensive than 2D cal-
culations. Therefore, for problems with axial symmetry,
the reduction of (1)–(5) to computations in a 2D merid-
ian cut provides a significant computational advantage. In
previous articles [6, 1], we developed a general framework
for high-order Lagrangian discretization of the Euler equa-
tions using curvilinear finite elements. In this paper, we
present the extension of this framework to axisymmetric
problems and demonstrate its ability to both conserve en-
ergy exactly and maintain symmetry. The realization of
both these goals concurrently has proven challenging for
many axisymmetric discretization schemes.

Traditional staggered-grid hydrodynamics (SGH) La-
grangian methods for axisymmetric problems have used
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the “area-weighted” method where the momentum equa-
tion is solved in 2D planar coordinates using the “area
masses” at nodes while the internal energy equation is
solved over the real volumes [7, 8]. This approach does
not conserve total energy and can often lead to incorrect
shock speeds, or cause spurious symmetry breaking in the
internal energy field near the axis of rotation, leading to
non-physical results as illustrated in Figure 1 and Figure
2. Preservation of physical symmetries is critical for iner-
tial confinement fusion (ICF) simulations as uncertainties
in whether non-symmetric results are due to numerical er-
rors or physical processes can limit predictive capability.
New SGH approaches have been proposed to address this
deficiency [9, 10, 11, 12], which have led to significant im-
provements in energy and symmetry preservation. Other
successful methods in this area include the special finite
elements proposed in [13, 14] and the recent cell-centered
hydro approach of [15]

Figure 1: Scatter plot of the density from an SGH spherical Sedov
blast wave in axisymmetric mode [16]. The exact solution corre-
sponds to the blue line. While the “area-weighted” approach pre-
serves the symmetry of accelerations, the corresponding energy up-
date is not conservative. In this calculation this results in a 6% spu-
rious gain in energy leading to incorrect shock speed and location.
These do not improve under mesh refinement.

In contrast to the above schemes, our finite element
numerical method is derived by a faithful reduction of the
3D axisymmetric problem to a 2D variational form in a
meridian cut of the domain, which conserves total energy
exactly by construction. Unlike the area-weighted scheme,
this leads to a rescaled momentum conservation equation,
which also includes new terms in the pressure gradient
and artificial viscosity forces. As in Cartesian coordinates,
the high-order finite element approach uses high-order ba-
sis function expansions obtained via a high-order mapping
from a standard reference element. This enables the use
of curvilinear zone geometry and higher order approxima-
tions for the fields within a zone.

The remainder of the paper is organized as follows. In
Section 2 we introduce notation and recall some basic facts

Figure 2: Example of numerical symmetry breaking in an axisym-
metric multi-material inertial confinement fusion (ICF) simulation.
This is an ALE calculation where different colors are used to identify
the different materials. The jet at the axis of rotation is spurious and
does not disappear under mesh refinement.

about axisymmetric scalar, vector and tensor fields. These
are used in Section 3, where we describe the derivation
of our axisymmetric semi-discrete finite element method,
followed by discussion of the artificial viscosity, the fully-
discrete algorithm and the relation to some classical SGH
methods. In Section 4, we present an extensive set of nu-
merical results that demonstrate the robustness of our al-
gorithm with respect to symmetry and energy conservation
on a range of challenging axisymmetric problems. Finally,
we summarize our experience and draw some conclusions
in Section 5.

2. Axisymmetric Scalar, Vector and Tensor Fields

In this section we recall some basic facts about axisym-
metric fields that will be used in the development of our
finite element discretization method in the following sec-
tion.

We assume that at any given time, the domain Ω oc-
cupied by the fluid is a body of revolution, as illustrated
in Figure 3. In cylindrical coordinates (r, θ, z), Ω can be
obtained from a “meridian cut” Γ in the r-z plane by a
rotation around the axis r = 0:

Ω = {(r, θ, z) : (r, z) ∈ Γ} .

A scalar function f , defined on the axisymmetric do-
main Ω, is itself called axisymmetric if it is independent of
θ, i.e. f(r, θ, z) = f(r, z), so f is uniquely determined by
its values in Γ. If f is given in Cartesian coordinates, it is
axisymmetric if and only if

∂

∂θ
f(r cos θ, r sin θ, z) = 0 ,
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Figure 3: Schematic depiction of the reduction of a 3D axisymmetric
problem to a 2D “meridian cut” in the r-z plane.

i.e. if f is only spatially varying in the r-z plane
A key property of axisymmetric functions is that their

integrals over Ω can be reduced to integrals over Γ:∫
Ω

f(r, θ, z) = 2π
∫

Γ

rf(r, z) . (6)

The local cylindrical coordinate system vectors at a point
(r, θ, z) are given by

~er = (cos θ, sin θ, 0) , ~eθ = (− sin θ, cos θ, 0) , ~ez = (0, 0, 1) .

A vector field v, defined on the axisymmetric domain Ω,
is called axisymmetric if

v = vr(r, z)~er + vθ(r, z)~eθ + vz(r, z)~ez ,

i.e. if v remains invariant under arbitrary rotation around
the axis r = 0. In our applications, the above vθ(r, z)
component decouples from the other two, so without a
loss of generality, we will further assume that vθ(r, z) = 0,
i.e. axisymmetric vector fields do not have components in
the normal direction of the meridian cut.

The gradient operator in cylindrical coordinates is given
by

∇rzf =
∂f

∂r
~er +

1
r

∂f

∂θ
~eθ +

∂f

∂z
~ez . (7)

Therefore, ∇rzf is axisymmetric if and only if f is. In this
case, the formula simplifies to

∇rzf =
∂f

∂r
~er +

∂f

∂z
~ez ,

which is just the regular 2D gradient in Γ. Note that this
property is one of the motivating factors for using area-
weighting schemes, as it implies that gradient operators
are unchanged in axisymmetric coordinates.

The divergence in cylindrical coordinates is more com-
plicated:

∇rz · v =
∂vr

∂r
+

1
r

∂vθ

∂θ
+
∂vz

∂z
+
vr

r
, (8)

but ∇rz ·v is still axisymmetric, provided that v is. In this
case, the formula simplifies to

∇rz · v =
∂vr

∂r
+
∂vz

∂z
+
vr

r
,

which has an extra term compared to the regular 2D di-
vergence in Γ.

The gradient of the axisymmetric vector function v =
vr(r, z)~er +vz(r, z)~ez can be derived using (7) and the fact
that ∂~er

∂θ = eθ. Specifically,

∇rzv =
∂v

∂r
⊗ ~er +

1
r

∂v

∂θ
⊗ ~eθ +

∂v

∂z
⊗ ~ez

=
∂vr

∂r
~er ⊗ ~er +

∂vz

∂r
~ez ⊗ ~er +

vr

r
~eθ ⊗ ~eθ+

∂vr

∂z
~er ⊗ ~ez +

∂vz

∂z
~ez ⊗ ~ez ,

so the matrix form of the gradient in the z−r−θ ordering
is

∇rzv =

∂vz

∂z
∂vz

∂r 0
∂vr

∂z
∂vr

∂r 0
0 0 vr

r

 =
(
∇2dv 0

0 vr

r

)
. (9)

In particular, for the contraction of axisymmetric vector
fields we have

∇rzv : ∇rzw = ∇2dv : ∇2dw +
vrwr

r2
,

which also implies the formula for the divergence in cylin-
drical coordinates:

∇rz · v = ∇rzv : I =
∂vz

∂z
+
∂vr

∂r
+
vr

r
.

3. Finite Element Discretization

In this section we derive and discuss a finite element-
based numerical approximation scheme for the Euler equa-
tions (1)–(5) in axisymmetric form. The presentation fol-
lows the finite element form of the general semi-discrete
Lagrangian discretization method from [1], to which we
refer for additional details.

3.1. Semi-Discrete Formulation
We first discuss the semi-discrete axisymmetric method,

which is concerned only with the spatial approximation of
the continuum equations. The fully-discrete methods that
incorporate time discretization will be presented in Section
3.3.

Let Ω(t) be the continuous 3D axisymmetric medium
(fluid or elastic body) which is deforming in time according
to (1)–(5) starting from an initial configuration at time
t = t0. Let Γ(t) be the corresponding meridian cut, as
discussed in Section 2. Following [1], we introduce a 2D
finite element mesh on Γ̃ ≡ Γ(t0) with zones (or elements)
{Γz(t0)}. This also induces a decomposition of Ω̃ ≡ Ω(t0)
into “donut”-like zones {Ωz(t0)} obtained by revolution of
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the 2D mesh elements around the axis r = 0 in cylindrical
coordinates:

Ωz(t0) = {(r, θ, z) : (r, z) ∈ Γz(t0)} . (10)

A main feature of our approach is that the finite ele-
ment mesh is described through the locations of high-order
particles (or control points) that are tracked by the semi-
discrete algorithm. This results in curvilinear zones that
can better represent the naturally developing curvature
in the flow. Specifically, the current position at time t,
x ∈ Γ(t), corresponding to a particle at an initial position
x̃ ∈ Γ̃ is discretized using the expansion

x(x̃, t) =
NV∑
i=1

xi(t)wi(x̃) = x(t)Tw(x̃) , (11)

where x(t) is an unknown time-dependent vector of coef-
ficients in the kinematic basis {wi}NV

i=1, and w is a column
vector of all the basis functions {wi}. The kinematic basis
functions are defined through Cartesian products of nodal
finite element basis functions {η̂i}Nv

i=1 defined on a standard
reference zone Γ̂z, which is the unit square in all cases con-
sidered in this paper. The curvilinear zones at time t are
then reconstructed as

Γz(t) = {x = Φz(x̂, t) : x̂ ∈ Γ̂z} , (12)

where Φz is the parametric mapping from the reference
element

Φz(x̂, t) =
Nv∑
i=1

xz,i(t) η̂i(x̂) . (13)

We denote the Jacobian of this mapping by Jz = ∇x̂Φz.
Note that the same nodal basis is used for discretization

of both the position and the velocity, so each component of
a wi|Γz

corresponds to η̂p◦Φ−1
z for some index p (the index

of the particle i on the reference element). The discrete
velocity field corresponding to the motion (11) is given by

v(x̃, t) =
∑

i

dxi

dt
(t)wi(x̃) = v(t)Tw(x̃) , i.e. v =

dx
dt

in agreement with (4).
We next discuss the reduction of the mass conservation

law, which is fundamental in the Lagrangian framework.
We start from the following equivalent form of (2): let
Ω′(t) be the revolution of an arbitrary set Γ′(t) ⊂ Γ(t),
then we mass conservation postulates that∫

Ω′(t)

ρ(t) =
∫

Ω′(t0)

ρ(t0) ,

i.e. the total mass in any axisymmetric volume Ω′(t) at
time t equals the initial mass at time t0. Due to (6), this
is equivalent to

2π
∫

Γ′(t)

rρ(t) = 2π
∫

Γ′(t0)

rρ(t0) .

Since Γ′(t) is arbitrary, we can reduce this further using a
change of variables to the reference element to obtain:

r(t)ρ(t)|Jz(t)| = r(t0)ρ(t0)|Jz(t0)| . (14)

We refer to the above semi-discrete principle as strong
mass conservation, and we note that the only difference
between this axisymmetric version and the Cartesian ver-
sion from (4.8) in [1] is the extra r term on both sides of
(14). Strong mass conservation allows us to express the
density at time t as a (non-polynomial) function of the
original density, effectively eliminating ρ from the semi-
discrete algorithm, and can be vied as a high order gener-
alization of zonal mass conservation. Though (14) is not
well-defined on the axis of rotation, we will only apply it
at points where r 6= 0.

We now focus on the derivation of the axisymmetric
form of the momentum conservation equation. Multiply-
ing (1) by a revolved test function wj and integrating by
parts, we get the weak variational formulation∫

Ω(t)

ρ
dv

dt
· wj = −

∫
Ω(t)

σ : ∇wj +
∫

∂Ω(t)

n · σ · wj , (15)

where n is the outward pointing unit normal vector of
the surface ∂Ω(t). Assuming the boundary integral term
vanishes and applying (6) we obtain

2π
∫

Γ(t)

rρ
dv

dt
· wj = −2π

∫
Γ(t)

rσrz : ∇rzwj . (16)

Using (9) and contraction of axisymmetric tensors, we can
write (16) in the form∫

Γ(t)

rρ
dv

dt
·wj = −

∫
Γ(t)

r (σ2d : ∇2dwj)−p(wj)r+σrr(wj)r ,

where σ2d and ∇2d are just the regular 2D stress and gra-
dient tensors in Γ. This can be viewed as a perturbation of
the Cartesian case, where the weak variational formulation
reads ∫

Γ(t)

ρ
dv

dt
· wj = −

∫
Γ(t)

σ2d : ∇2dwj .

We emphasize that even though the two versions are sim-
ilar, they are not the same due to the r weighing of the
integrals and the extra pressure and stress-related terms
on the right-hand side of the axisymmetric case. This is
in contrast to the “area-weighting” scheme which essen-
tially uses the Cartesian form in axisymmetric computa-
tions. While our approach is more faithful to the original
3D equations on Ω, we do not automatically inherit the
symmetry-preservation properties of the Cartesian form.
Nevertheless, we do observe good symmetry preservation
in practice as illustrated in Section 4.

Let MV be the axisymmetric kinematic mass matrix
(we skip the 2π factor)

MV =
∫

Γ(t)

rρwwT , (17)
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where we have defined the basis w(t) by moving w(t0)
according to the Lagrangian motion (11). This means that
dw
dt = 0, which together with (14) implies

dMV

dt
= 0,

i.e., the kinematic mass matrix is independent of time.
This is an important feature of our approach.

With this notation, we can write our semi-discrete mo-
mentum conservation briefly as

MV
dv
dt

= −
∫

Γ(t)

rσrz : ∇rzw. (18)

To discretize the energy conservation law, we introduce
a thermodynamic approximation space with basis {φi}NE

j=1

which is analogous to the kinematic basis, except that it
is discontinuous (we make this choice due to the local na-
ture of the equation of state). The internal energy is then
approximated as

e(x̃, t) =
∑

j

ej(t)φj(x̃) = e(t)Tφ(x̃) ,

where e(t) is an unknown time-dependent vector of size
NE and φ(x̃) is a column vector of all the basis functions
{φj}NE

j=1.
The weak variational formulation of the energy conser-

vation equation (3) is obtained by multiplying it by φi and
integrating over the domain Ω(t):∫

Ω(t)

(
ρ
de

dt

)
φi =

∫
Ω(t)

(σ : ∇v)φi. (19)

Using (6), this reads

2π
∫

Γ(t)

r

(
ρ
de

dt

)
φi = 2π

∫
Γ(t)

r(σrz : ∇rzv)φi ,

which can be written briefly as

ME
de
dt

=
∫

Γ(t)

r(σrz : ∇rzv) φ , (20)

where ME is the axisymmetric thermodynamic mass ma-
trix

ME ≡
∫

Γ(t)

rρφφT . (21)

Similarly to MV , this matrix is independent of time.
We finally introduce the so-called axisymmetric force

matrix that connects the kinematic and thermodynamic
spaces:

Fij =
∫

Γ(t)

r (σrz : ∇rzwi)φj . (22)

This allows us to summarize our axisymmetric semi-discrete
Lagrangian conservation laws in the following simple form:

Momentum Conservation: MV
dv
dt

= −F · 1, (23)

Energy Conservation: ME
de
dt

= FT · v, (24)

Equation of Motion:
dx
dt

= v. (25)

Here 1 is a vector representing the constant one in the
thermodynamic basis {φi}.

The above semi-discrete form is identical to the one
from the 2D Cartesian case [1], with the only differences
being the r-scaling in the integrals and the extra terms in
the force matrix. In particular, the time independence of
the mass matrices and the compatible right-hand sides of
(24) and (25) imply that the above semi-discrete scheme
will conserve total energy exactly on a semi-discrete level.
The proof of this fact can be found in [1]; we present it
below for completeness.

The change in the total energy

E(t) =
∫

Ω(t)

ρ
|v|2

2
+ ρ e (26)

can be expressed in the semi-discrete settings using (6) as:

dE

dt
= 2π

d

dt

(
1
2

v ·MV · v + 1 ·ME · e
)
.

Using the fact that both the kinematic and thermody-
namic mass matrices are symmetric and independent of
time, as well as equations (23) and (24), we get

1
2π

dE

dt
= v·MV ·

dv
dt

+1·ME ·
de
dt

= −v·F·1+1·FT ·v = 0 ,

i.e. the total energy remains constant in time.

Remark 1. As an alternative to the more explicit Γ-based
perspective presented in this section, one can also consider
the direct discretization of the 3D domain Ω using the ro-
tated versions of the finite element mesh, cf. (10) , as
well as the kinematic and thermodynamic spaces. Though
the resulting 3D approximation spaces V and E are not
of finite element type, they are finite dimensional, so the
abstract semi-discrete Lagrangian variational formulation
from Section 3 in [1] still applies. In particular, we can
conclude that the above semi-discrete equations (with in-
tegrals computed e.g. by reduction to the meridian cut)
exactly satisfy the properties of mass, momentum and en-
ergy conservation as well as the geometric conservation
law, based on Theorem 3.1 from [1].

3.2. Axisymmetric Tensor Artificial Viscosity
In this section we briefly outline the modifications to

the tensor artificial viscosity term from Section 6 in [1]
which are necessary for the axisymmetric case. The changes
are minor, so we simply outline them for the specific case
of the artificial stress option 2,

σa,2 = µε(v) . (27)

Similar considerations apply to the other viscosity types
considered in [1].

First, we note that the symmetrized gradient of the
velocity field,

ε(v) ≡ 1
2
(∇v + v∇) ,
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has the following form in the axisymmetric case (using the
z − r − θ ordering from Section 2)

ε(v) =
(
ε2d(v) 0

0 vr

r

)
where ε2d(v) is simply the symmetrized gradient in Γ.
There is no problem with division by zero in the rr-component
of the stress tensor, since when it is used in the force com-
putations of (22), ε(v)rr generates the extra term vr

r (wi)rφj ,
which is zero on r = 0 due to the boundary conditions
of symmetry in the kinematic space. Furthermore, σa,2 is
only being evaluated at Gaussian quadrature points, which
all have r 6= 0.

The coefficient µ in (27) is based on a “shock direction”
vector s, which we assume to lie in the meridian cut plane
Γ, i.e. we ignore the ~eθ eigenvector of εrz(v) and compute
s only from ε2d(v) (same as in 2D).

The overall form of the directional viscosity coefficient
is

µs = ρ̃
[
q2ψ2`

2
s|∆sv|+ q1ψ0ψ1`scs

]
where we use the axisymmetric strong mass conservation
to compute ρ̃:

ρ̃ = ρ(t0)
r(t0)|Jz(t0)|
r(t)|Jz(t)|

.

The measure of compression |∆sv| and the directional length
scale `s are the same as in 2D because s lies in Γ. The only
other difference is in the vorticity/compression measure,
which incorporates the rz divergence of (8)

ψ0 =
|∇2d · v + vr/r|√
‖∇2dv‖2 + |vr/r|2

.

Again, division by zero on the axis r = 0 does not arise,
since the Gaussian quadrature points in which ψ0 is being
evaluated are in the interior of the computational zones.

3.3. Fully-discrete Method
Let {tn}Nt

n=0 be different moments in time and denote
Γn ≡ Γ(tn) and Ωn ≡ Ω(tn). We use a superscript n to
identify the quantities associated with tn.

As in [1], let Y = (v; e;x) be a vector of the hydro-
dynamic state variables. Our semi-discrete conservation
equations then are:

dY
dt

= F(Y, t),

where

F(Y, t) =

Fv(v, e,x)
Fe(v, e,x)
Fx(v, e,x)

 =

−M−1
V F · 1

M−1
E FT · v

v



We can apply standard high-order time integration solvers
to the above system of nonlinear ODEs, including vari-
ants of explicit Runge-Kutta methods, such as the RK2-
Average scheme from Section 7.1 in [1]:

vn+ 1
2 = vn − (∆t/2)M−1

V Fn · 1,

en+ 1
2 = en + (∆t/2)M−1

E (Fn)T · vn+ 1
2 ,

xn+ 1
2 = xn + (∆t/2)vn+ 1

2 ,

vn+1 = vn −∆tM−1
V Fn+ 1

2 · 1,

en+1 = en + ∆tM−1
E (Fn+ 1

2 )T · v̄n+ 1
2 ,

xn+1 = xn + ∆t v̄n+ 1
2 ,

where Fn = F(Y n) and v̄n+ 1
2 = (vn + vn+1)/2. This

choice has the attractive property that it conserves the
discrete total energy exactly [1] and is the default time
integrator in the numerical experiments in Section 4.

Our automatic time-step control for determining ∆t is
based on the density, sound speed, viscosity coefficient and
minimal singular values of the Jacobian Jz, which do not
require any modifications in the axisymmetric case.

3.4. Relation to SGH Methods
In this section we describe several connections between

our finite element framework and some classical discretiza-
tion schemes under additional discretization assumptions.

As in Section 5.1 of [1], we first consider the evaluation
of the kinematic mass matrix in the case of piecewise bilin-
ear kinematic approximation and a single point quadrature
rule with mass lumping. This produces a diagonal matrix,
with “nodal masses”

mn =
∑
Γz3n

1
4
rzρz|Γz| ,

where |Γz| is area of the zone, rz and ρz denote the values
of r and the density in the zone center, and the sum is
taken over all zones containing a fixed node (vertex) n.
We can write this as

mn =
∑
Γz3n

rzm
2d
z , where m2d

z =
1
4
ρz|Γz| ,

which is an r-weighted version of the two-dimensional SGH
nodal masses from [7].

Applying the same one point quadrature rule in the
computation of the force representing the right-hand side
of the momentum equation we get (analogously to [1])

fn =
∑
Γz3n

fz ,

where the axisymmetric corner force vector fz relates to
the 2D HEMP corner forces f2d of [7] as follows:

fz = rzf2d
z +

pz|Γz|
4

(
0
1

)
z−r

,
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i.e. fz is an r-weighted version of f2d
z plus an extra pressure

term in its r component.
To summarize, under the specified simplifying assump-

tions, our axisymmetric momentum equation for the nodal
accelerations an reads(∑

Γz3n

rzm
2d
z

)
an =

∑
Γz3n

rzf2d
z +

pz|Γz|
4

(
0
1

)
. (28)

which is similar to, but differs from the “area-weighted”
(Cartesian) version(∑

Γz3n

m2d
z

)
a2d

n =
∑

Ωz3n

f2d
z .

We next discuss the discretization of the internal en-
ergy equation in the case of piece-wise constant thermody-
namic basis. In the Wilkins approach, [7] the rz velocity
divergence in the center of a zone is approximated through
the rate of change of its revolved volume

1
|Ωz(t)|

d|Ωz(t)|
dt

= ∇ · v . (29)

This formula is related to the so-called geometric conser-
vation law,

d|Ω(t)|
dt

=
∫

Ω(t)

∇ · v , (30)

but we remark that unlike the Cartesian case, (29) is only
an approximation to, and not equivalent with (30).

In the general compatible hydro approach [17, 9, 18],
the right-hand side of the energy equation is computed
through the corner forces computed in the momentum
equation:

mz
dez

dt
= −fz · vz . (31)

It is straightforward to check that we recover a formula of
the above type under the simplifying assumptions, with

mz = ρz|Ωz| and vz =
∑

n∈Γz

vn .

We comment that our simplified SGH-like scheme based
on (28) and (31) inherits the exact total energy conserva-
tion property, in the sense that

d

dt

(∑
n

mn
|vn|2

2
+
∑
Γz

mzez

)
= 0 .

Indeed, assuming constant nodal masses,

d

dt

∑
n

mn
|vn|2

2
=
∑

n

mnan · vn =
∑

n

fn · vn

but ∑
n

fn · vn =
∑
Γz

fz ·
∑

n∈Γz

vn = − d

dt

∑
Γz

mzez

which completes the proof.

4. Numerical Results

We now present a series of numerical results using the
newly developed axisymmetric curvilinear finite element
formulation. For all test cases considered, we solve the
global linear system for momentum conservation using a
diagonally scaled conjugate gradient algorithm to a resid-
ual tolerance of 10−8 and unless otherwise specified, we
use an ideal gas equation of state with a constant adia-
batic index γ = 5/3 and the type 2 tensor artificial viscos-
ity described in [1] with linear and quadratic coefficients
q1 = 1/2 and q2 = 2. Furthermore, in most of these exam-
ples we only consider the use of a Q2-Q1 method for the
sake of brevity. The only exception is Section 4.4 where
we consider a Q4-Q3 method to demonstrate that our ax-
isymmetric formulation is valid for arbitrary order basis
functions as described in [1]. The axisymmetric Q2-Q1

method consists of 9 kinematic degrees of freedom per zone
and 4 discontinuous thermodynamic degrees of freedom
per zone. The results in this section have been computed
with our high-order finite element Lagrangian hydrocode
BLAST [19], which is based on the parallel modular finite
element methods library MFEM [20]. We also used the
related OpenGL visualization tool GLVis [21] to plot the
computed curvilinear meshes and high-order fields.

4.1. Cylindrical Saltzman Piston
In this test problem, a 1D piston shock wave is prop-

agated over an initially distorted 2D mesh. The problem
domain is a cylinder with z ∈ [0, 1] and r ∈ [0, 0.1] with
initial thermodynamic conditions ρ = 1, p = 0 and e = 0.
The details of how the initial skewed mesh is constructed
can be found in [22]. The velocity is initially zero every-
where except at the wall x = 0, where a constant velocity
source of vx = 1.0 is applied for all time. This problem
tests the ability of our axisymmetric methods to maintain
a 1D planar shock front on a mesh that is not aligned with
the shock flow and provides and indication of the robust-
ness of our method with respect to mesh imprinting. It is
also a good test of possible symmetry breaking near the
axis of rotation.

In Figure 4 we plot the density field and curvilinear
mesh at snapshots in time corresponding to t = 0.7, 0.8,
0.88, 0.92, 0.94, 0.96, 0.975, 0.985, 0.987, 0.99 and 0.992.
Note that the shock front has bounced from the boundary
walls for a total of seven times. To our knowledge this
is the latest time to which this problem has been shown
to run in a purely Lagrangian manner. Note also that
the shock front remains largely flat for all time and only
at extremely late times do we begin to observe the minor
effect of symmetry breaking near the axis of rotation.

4.2. Spherical Sedov Explosion
The Sedov problem consists of an ideal gas (γ = 1.4)

with a delta function source of internal energy deposited at
the origin such that the total energy Etot = 1. The sudden
release of the energy creates an expanding spherical shock
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Figure 4: Curvilinear mesh and density field sampled at multiple
points per zone for the cylindrical Saltzman piston problem at t =
0.7, 0.8, 0.88, 0.92, 0.94, 0.96, 0.975, 0.985, 0.987, 0.99 and 0.992 for
a total of 7 bounces. Each image is rescaled to an aspect ratio of
5 : 1.

wave, converting the initial internal energy into kinetic
energy. The delta function energy source is approximated
by setting the internal energy e to zero in all degrees of
freedom except at the origin where the value is chosen so
that the total internal energy is 1.

In Figure 5 we plot the density field and curvilinear
mesh at the final time of t = 1.0. In Figure 6 we show
scatter plots of the density versus the radius sampled at 9
points per zone and at 1 point per zone (at the zone center)
on a sequence of refined meshes. The oscillations in the
data near the shock front are at the sub-zonal level, the
zone centered values do not exhibit this behavior. Note
that in this calculation, the total numerical energy was
conserved to machine precision for all time and we have
convergence to the exact shock location, cf. Figure 1.

Figure 5: Curvilinear mesh and density field sampled at multiple
points per zone for the axisymmetric Sedov problem on a 40 × 40
Cartesian grid at time t = 1.0.

4.3. Spherical Noh Implosion
The Noh problem consists of an ideal gas with γ = 5/3,

initial density ρ0 = 1 and initial energy e0 = 0. The value
of each velocity degree of freedom is initialized to a radial
vector pointing toward the origin, v = −~r/‖~r‖. The initial
velocity generates a spherical stagnation shock wave that
propagates outward with a speed of 1

3 and produces a peak
post-shock density of ρ = 64.

In Figure 7 we plot the density field and curvilinear
mesh at the final time of t = 0.6. In Figure 8 we show
scatter plots of the density versus the radius sampled at 9
points per zone and at 1 point per zone (at the zone center)
on a sequence of refined meshes. As with the previous
problem, the oscillations in the data near the shock front
are at the sub-zonal level, the zone centered values do not
exhibit this behavior. Note that in this calculation, the
total numerical energy was conserved to machine preserve
for all time.

8



Figure 6: Scatter plots of density vs. radius sampled at 9 points per
zone and 1 point per zone for the axisymmetric Sedov problem on a
Cartesian grid.

Figure 7: Curvilinear mesh and density field sampled at multiple
points per zone for the axisymmetric Noh problem on a 64 × 64
Cartesian grid at time t = 0.6.

4.4. Axisymmetric Multi-Material Shock Triple Point In-
teraction

The triple point problem describes the interaction of
three materials with ideal gas equations of state. The ini-
tial domain, materials and initial conditions are shown in
Figure 9. Slip wall boundary conditions are imposed ev-
erywhere on the boundary, i.e. vz = 0 at z = 0, z = 7 and
vr = 0 at r = 0, r = 3.

We discretize the problem using the Q4-Q3 finite el-
ement space pair (see [1]) which is based on bi-quartic
continuous velocity and displacement spaces and bi-cubic
discontinuous energy space. The initial mesh is a 56× 24
uniform Cartesian mesh. For all discretization parameters
we use their default values except for the tensor artificial
viscosity where we use type 4 (see [1]) modified appropri-
etely for the axisymmetric case.

In Figure 10, we present a sequence of snapshots of the
computational mesh and density up to time t = 5. Note
the extreme mesh distortion in the vortex region, near the
horizontal material interface, as well as aroiund the r = 0
axis. Even in the presense of such extreme deformations
our method still maintains its robustness.

In Figure 11, we plot the full 3D material domains at
the final time t = 5 obtained by revolving the solution
from the meridian cut about the axis of symmetry r = 0.

4.5. Multi-Material Spherical Implosion
Here we consider a simple 1D multi-material implosion

problem on unstructured 2D meshes. The problem con-
sists of a low density material with ρ1 = 0.05 in the radial
range r ∈ [0, 1] surrounded by a shell of high density ma-
terial ρ2 = 1.0 in the radial range r ∈ [1.0, 1.2]. Each
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Figure 8: Scatter plots of density vs. radius sampled at 9 points per
zone and 1 point per zone for the axisymmetric Noh problem on a
Cartesian grid.

Figure 9: Initial conditions for the axisymmetric multi-material
shock triple point interaction problem.

Figure 10: Snapshots of density and curvilinear mesh for the ax-
isymmetric triple point problem obtained using the Q4-Q3 method
at t = 2, 3, 4, and 5 (top to bottom).
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Figure 11: Full 3D visualization of the materials in the axisymmetric
triple point problem obtained using the Q4-Q3 method at t = 5;
revolved axisymmetric mesh (top) and density (bottom).

material is at an initial pressure of p = 0.1 and uses an
ideal gas equation of state with γ = 5/3.

This problem was originally proposed by [23] for cylin-
drical symmetry. Here we make a simple modification for
spherical symmetry, instead of applying a time dependent
pressure source to the outermost radial surface of the prob-
lem, we apply a constant velocity source of v = −5~r/‖~r‖.
The outer surface drives a spherical shock wave inward.
Ideally, the interface between the high and low density ma-
terials should remain perfectly spherical for all time due
to the spherical symmetry of the velocity drive. However,
the discretization errors of the initial geometry of this sur-
face and subsequent error introduced by the numerical al-
gorithm will be amplified over time since the interface is
subject to both Richtmyer-Meshkov (RM) and Rayleigh-
Taylor (RT) instabilities.

In Figure 12 we show plots of the mesh and density on
a log scale at three snapshots in time for the case of a uni-
form unstructured mesh. In Figure 13 we show identical
plots for the same problem on a randomly perturbed un-
structured mesh. In both cases, the initial mesh is curved
by mapping all position degrees of freedom in the outer
high density shell to a spherical surface. Note that the
randomly perturbed mesh has both non-uniform angular
spacing as well as non-uniform aspect ratios in the central
“box” region. Maintaining spherical symmetry on such a
mesh with a Lagrangian method is a non-trivial task, cf.
Figure 2.

In Figure 14 we plot the average radius of the entire
material interface using 5 points per edge for both cases
and compare these to a reference 1D result (obtained from
a high resolution 1D Lagrangian SGH calculation). Note
that each mesh yields essentially identical results in the
average radius and both are in good agreement with the
1D high resolution reference solution. In Figure 14 we also
plot the normalized standard deviation of this radial sur-
face which indicates the symmetry error over time. Note
the degree to which the interface symmetry is preserved,
even on the random mesh, with errors less that 0.1%.

5. Conclusions

In this paper we presented an extension of our high-
order curvilinear finite element method for solving the
equations of compressible hydrodynamics in a Lagrangian
frame to the case of axisymmetric problems. This exten-
sion results in relatively simple modifications to the semi-
discrete formulation, consisting of a rescaled momentum
conservation equation and new radial terms in the pressure
gradient and artificial viscosity forces, and was shown to
exactly conserve total numerical energy. We also demon-
strated via numerical examples the benefits of the new high
order curvilinear axisymmetric discretization method, in-
cluding: significant improvements in symmetry preserva-
tion for symmetric flows even when the underlying mesh is
highly non-uniform; the ability to more accurately capture
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Figure 12: Snapshots of curvilinear mesh and density field (log scale)
sampled at multiple points per zone at times t = 0, t = 0.08 and
t = 0.15 for the axisymmetric multi-material spherical implosion
problem on an unstructured uniform mesh.

Figure 13: Snapshots of curvilinear mesh and density field (log scale)
sampled at multiple points per zone at times t = 0, t = 0.08 and
t = 0.15 for the axisymmetric multi-material spherical implosion
problem on an unstructured random mesh.
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Figure 14: Average interface radius vs. time (top) and percent sym-
metry error vs. time (bottom) for the axisymmetric multi-material
spherical implosion problem on an unstructured uniform and random
mesh.

geometrical features of a flow region and maintain robust-
ness with respect to mesh motion using curvilinear zones
and high order bases; the elimination of the need for ad
hoc hourglass filters; sharper resolution of a shock front for
a given mesh resolution including the ability to represent a
shock within a single zone; and a substantial reduction in
mesh imprinting for shock wave propagation not aligned
with the computational mesh.
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